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Abstract - In this paper, a new optimal control algorithm 
is proposed to achieve the best possible dynamic 
performance for DC-to-DC converters under load 
changes and input voltage changes. Using the concept of 
capacitor charge balance, the proposed algorithm 
predicts the optimal transient response for a DC-to-DC 
converter during the large signal load current change, or 
input voltage change. The equations used to calculate the 
optimized transient time and the optimized duty cycle 
series are presented. By using the proposed algorithm, 
the best possible transient performance, including the 
smallest output voltage overshoot/undershoot and the 
shortest recovery time, is achieved. In addition, since the 
large signal dynamic response of power converters is 
successfully predicted, the large signal stability is 
guaranteed. Experimental results show that the proposed 
method produces much better dynamic performance 
than a conventional current mode PID controller. 

I. INTRODUCTION 
Recently, there has been an increasing demand for high 

dynamic performance power converters. Among the many 
criteria of dynamic performance, output voltage overshoot 
and recovery time are often considered the most important. 
In general, the output voltage deviates under load change, or 
input voltage change. The value of output voltage deviation 
depends on the filter inductor and capacitor values in the 
powertrain, and the switching frequency and control 
algorithm. If the inductor, capacitor and switching frequency 
are fixed, different control algorithms achieve different 
dynamic performance. Some work has been done to improve 
the dynamic performance of power converters [1]-[3]. 
However, these methods cannot guarantee the best possible 
dynamic performance. 

In theory, for any specific power converter and its related 
parameters, there exists a best possible dynamic 
performance (minimum overshoot and/or minimum recovery 
time) under a load current change, or input voltage change. 
If we can determine the best possible transient response and 
a method to realize it, the dynamic performance can be 
greatly improved. Therefore, it is not only necessary but also 
practical to explore the best possible dynamic performance 
for power converters.  

In this paper, a new digital optimal control algorithm is 
proposed to achieve the best possible dynamic performance 
for DC-to-DC converters.  The proposed method uses the 
principle of capacitor charge balance to predict the necessary 
minimum number of switching cycles and their appropriate 

duty cycles to drive the output voltage back to its nominal 
value during a transient condition. In section II, the transient 
response of a buck converter under voltage mode control is 
analyzed in order to outline the deficiencies of conventional 
linear control techniques. In section III, the optimal transient 
response algorithm is proposed. This is followed by the 
derivation of the equations to implement the proposed 
method in section IV.  Experimental results are presented in 
section V and the conclusions are presented in section VI. 

II. LIMITATIONS OF CONVENTIONAL CONTROL METHODS 
DURING A LOAD TRANSIENT  

Since the dynamic performance under a load current 
change is one of the most important issues in power 
converter design, the transient response of a power converter 
under a large signal positive load current change will be 
fully discussed.  In this section, the transient response of a 
buck converter (Fig. 1) under voltage mode control is 
analyzed. 
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Fig. 1 Synchronous buck converter 

The dynamic response waveforms of a voltage mode 
controlled buck converter under positive load current step 
change are illustrated in Fig. 2. In the beginning, the load 
current steps from io1 to io2 at point 0. It is assumed that 
before point 1, the output voltage drop has not been sensed 
by the control circuit. Therefore, the duty cycle remains 
constant. As a result, the inductor current remains 
unchanged during the period t0. Then, since the load current 
is greater than the inductor current, the capacitor discharges 
to provide the required load current. As a result, the 
capacitor and output voltages decrease. At point 1, the 
output voltage drop is sensed by the control circuit. Then, 
with voltage mode control, the duty cycle increases, which 
causes the inductor current to increase. However, before 
point 2, the inductor current is lower than the load current. 
As a result, the capacitor voltage continues to decrease. At 
point 2, the inductor current is equal to the load current, so 
then the capacitor stops discharging. At this point, the 
capacitor voltage drop is at its maximum.
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Fig. 2 Transient response of a voltage mode controlled buck converter under positive load current step change (top: inductor current, bottom: capacitor 
voltage) 

It can be observed from Fig. 2 that under voltage mode 
control, the duty cycle is not 100% during t1. As a result, the 
inductor current cannot increase at its maximum slew rate. 
Therefore, the time period, t1, for the inductor current to rise 
above the load current is not minimized. It can be clearly 
observed from Fig. 2 that the discharge area, Adischarge, is not 
minimized. Since the value of Adischarge determines the 
maximum capacitor voltage drop during the transient, the 
maximum capacitor voltage drop is not minimized. 

After point 2, the inductor current continues to increase 
and becomes greater than the load current. As a 
consequence, the capacitor is recharged and the capacitor 
voltage rises up towards the nominal value Vref. When the 
value of capacitor charge, Acharge, is equal to the capacitor 
discharge, Adischarge, the capacitor voltage reaches its nominal 
value, Vref, shown as point 3. However, using voltage mode 
control or other conventional linear control methods, the 
inductor current is usually not equal to the new steady state 
inductor current value at this point. Therefore, in the 
switching period after point 3, the capacitor current is non-
zero. Therefore, the output voltage is not equal to the 
nominal value, Vref. Furthermore, since the capacitor current 
is non-zero, the capacitor continues to charge or discharge. 
As a result, the capacitor and output voltages continue to 
change and the converter remains in the transient state. If the 
voltage mode controller is designed to make the system 
stable, the converter will enter the new steady state several 
switching cycles later at point 5. This analysis indicates that 
voltage mode control cannot achieve the best possible 
dynamic performance. 

Generally speaking, the design objectives for voltage 
mode control, or other conventional linear control methods 

are to make the steady state error converge to zero and to 
achieve wide bandwidth with sufficient phase margin. 
However, these objectives cannot guarantee minimum 
overshoot and transient time for load current changes or 
input voltage changes. Therefore, to achieve the best 
possible dynamic response, a new advanced control 
algorithm is needed. 

III. PROPOSED OPTIMAL TRANSIENT RESPONSE 
ALGORITHM 

When load current changes, different control methods 
generate different duty cycle series allowing the output 
voltage to recover. As a consequence, their transient 
performances are different. However, for a given set of 
power converter parameters, there exists a control method to 
generate an optimized duty cycle series, which can drive the 
power converter system to achieve the minimum overshoot 
and/or minimum transient time under a large signal load 
current change.  

From the analysis presented in section II, it can be clearly 
seen that if the following necessary and sufficient conditions 
are satisfied, the best possible dynamic performance will be 
achieved: 

1) At the beginning of the transient, the inductor current 
should rise at its maximum slew rate. When the 
inductor current reaches its peak value, it should drop 
at its maximum slew rate. 

2) When the charge delivered to the capacitor is equal to 
the charge delivered by the capacitor, the inductor 
current reaches its new steady state value and the 
transient ends. 

3) When the transient ends, the duty cycle for the next 
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switching cycle will be set to its new steady state 
value. 

Fig. 3 illustrates the waveforms of the inductor current 
and capacitor voltage under a positive load current change 
when the best possible transient response satisfies the above 
conditions. In the beginning, the load current changes from 
io1 to io2 at point 0. In a digitally controlled buck converter, 
the output voltage is sensed each switching cycle. Assuming 
that at point 1, the output voltage deviation exceeds a 
predefined level, the control system judges that the buck 
converter has entered a large signal response period, so then, 
the optimal control algorithm is activated. Under the optimal 
control algorithm, the inductor current is forced to follow the 
proposed optimal transient waveforms. Specifically, the 
proposed best possible transient under positive load current 
change consists of two periods, the optimized inductor 
current rising period, tup, and the optimized inductor current 
falling period, tdown. 

During tup, the duty cycle is set at 100%, so that the 
inductor current increases at its maximum slew rate. tup is 
composed of two intervals t1 and t2. During t1, the inductor 
current is lower than the load current. During t2, the inductor 
current is higher than the load current. At the end of interval 
tup, the inductor current reaches its peak value, iL3, at point 3. 
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Fig. 3 Optimal inductor current transient for load current positive change 
when 

sopt NTt =  (top: inductor current, bottom: capacitor voltage) 

After point 3, the transient process enters the optimized 
inductor current falling period, tdown. During this interval, the 
duty cycle is set at 0%, so that the inductor current drops at 
its maximum slew rate. tdown is composed of two intervals t3 
and t4. During t3, the inductor current is greater than the load 
current. During t4, the inductor current is lower than the load 
current. At point 5, the inductor current reaches its new 
steady state value, iL_end, and at the same time, the charge 
delivered to capacitor is equal to the charge delivered by the 
capacitor, so the transient ends.  

If the inductor current and capacitor voltage follow this 
path, the best possible dynamic performance including 
minimum undershoot and transient time is achieved. 

IV. DERIVATION OF THE OPTIMAL CONTROL ALGORITHM 
FOR PRACTICAL IMPLEMENTATION  

The dynamic equations of the synchronous buck converter 
can be expressed by (1)-(3). 

L
vv

dt
di oinL '−

=  (1)

Equation (1) is applicable when S1 is on and S2 is off. 

L
v

dt
di oL '−

=  (2)

Equation (2) is applicable when S1 is off and S2 is on. 

oLc
C iii

dt
dvC −==  (3)

In (1)-(3), vin represents the input voltage, vc represents 
the capacitor voltage, ic represents the capacitor current, iL 
represents the inductor current, io represents the load current 
and vo’ represents the equivalent output voltage including 
the system losses. vo’ is given by (4), which includes the 
output voltage, vo, and system loss, rloss.   

lossooo rivv +='  (4)
The output voltage is given by (5), where ESR represents 

the equivalent series resistance of the filter capacitor. 
ESRivv CCo +=  (5)

rloss is expressed as (6), where RL represents the winding 
resistance of the filter inductor, Ron represents the MOSFET 
on resistance and Rswitching represents the MOSFET switching 
loss.   

switchingonLloss RRRr ++=  (6)
The key point to achieve the optimal transient response is 

to precisely predict the rising and falling periods of the 
transient, tup and tdown. Calculating tup and tdown requires 
values for iL, vo and io. In real time implementation iL and vo 
can be directly measured, however io must be estimated. 

In the proposed optimal control algorithm, the optimized 
transient time can be calculated in six steps:  

1) Estimating the new load current io2 
2) Calculating the inductor current rising and falling 

slew rates  
3) Calculating the capacitor discharge portion A0 
4) Calculating t1 and the capacitor discharge portion A1  
5) Calculating t4 and the capacitor discharge portion A3  
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6) Calculating the capacitor charge A2 and the time 
periods t2 and t3 

In order to simplify the calculations, three assumptions 
are made: 

1) During the transient, the output voltage variation is 
small, so it can be assumed that the output voltage is 
approximately equal to Vref. 

2) After point 1, the load current remains constant at io2. 
3) The input voltage remains constant during the 

transient. 
These assumptions are usually true in real applications. 

Using these assumptions, the equations to calculate the 
optimized transient time are given as follows: 

Step 1: Estimating the new load current io2 
To estimate the new load current value, the output 

voltage, vo1, the inductor current iL1 at point 1, the output 
voltage, voa, and the inductor current, iLa at point 1.a are 
sensed. During the time interval, t1a, the change of output 
capacitor charge can be written as (7), and re-written as (8)  

)( 0 ESRivCvC CC ∆−∆=∆  (7)

∫ ⋅−=

⋅−−−⋅=∆⋅
apo

po oL

CCaoaC

dtii

ESRiivvCvC
.1int

1int 2

110

)(            

])()[(

 
(8)

In (8), iCa and iC1 are the capacitor current at point 1 and 
point 1.a. Since iC1=iL1-io2, iCa=iLa-io2, and iC2-iC1=iLa-iL1, 
then, (8) can be rewritten as (9). 

ESRCiititiivvC LLaaoaLaLoa ⋅⋅−+⋅−⋅+=−⋅ )()(
2
1)( 1121110  (9)

From (9), the new load current io2 can be estimated using 
(10). 
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−+= (10)

Step 2: Calculating the inductor current rising and 
falling slew rates 

Considering the losses of the power stage, the inductor 
current rising and falling slew rate can be obtained from (1) 
and (2) respectively. Here, for simplicity, an approximation 
is made that during the transient, so (11) is obtained. 

lossorefo riVv ⋅+≈ 2'  (11)

Step 3: Calculating the capacitor discharge portion A0 
The capacitor discharge A0 can be estimated by using the 

change of the capacitor voltage during the time period t0. 
Assuming that the capacitor voltage ripple is very small, the 
capacitor discharge A0 can be obtained using (12). 
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(12)

Step 4: Calculating t1 and the capacitor discharge 
portion A1 

Based on the estimated load current io2 and the inductor 
current rising slew rate given by (1), the interval t1 and the 
capacitor discharge A1 can be obtained by using (13) and 
(14). 
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(13)

)(
2
1

10211 LiitA −=  (14)

Step 5: Calculating t4 and the capacitor discharge 
portion A3  

When the transient ends, the new steady state duty cycle 
can be obtained using (15). 

in

o
new v

v
D

'
=

 
(15)

Then, the value of the new steady state inductor current 
ripple can be expressed as (16). 

L
v

TDI o
snewripple

'
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(16)

Therefore, the new steady state inductor current valley 
value iL_end is given by (17). 
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(17)

Based on the estimated load current, io2, the inductor 
current falling slew rate given by (2) and the new steady 
state inductor current valley value given by (17), the interval 
t4 and the capacitor discharge area A3 can be obtained using 
(18) and (19). 
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(19)

Step 6: Calculating the capacitor charge A2 and the time 
periods t2 and t3 

In the proposed method, the charge delivered by the 
capacitor is equal to the charge delivered to the capacitor so 
(20) is obtained. 

2310 AAAA =++  (20)
 In addition, during the time period t2, the inductor current 

slew rate is given by (1). During the time period t3, the 
inductor current slew rate is given by (2). Then, the 
capacitor charge area A2 can be rewritten as (21), where iL3 is 
given by (22). 
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(22)

Using (22), the ratio t2/t3 can be derived as (23). 
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(23)

Then, using (7), (14), (19) and (21)–(23), the optimal 
transient time t2 and t3 can be derived using (24) and (25). 
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By using (13), (18), (24) and (25), the optimal transient 
time is expressed as (26). 

4321 ttttt opt +++=  (26)
From the above equations, it can be observed that the 

proposed optimal transient response method mainly uses 
division and square root operations to calculate t1 through t4. 
If these two calculation operations are saved and 
implemented by look-up tables, then the desired optimum 
control algorithm can be easily implemented using ASICs. 

Using the values of t1, t2, t3 and t4, the minimum number 
of switching cycles and the duty cycles of each switching 
cycle can be easily predicted. However, there are two cases 
for topt:  

1) topt is an integer multiple of Ts, where Ts is the 
switching period, which is also the sampling period  

2) topt  is not an integer multiple of Ts 
In the first case, it is assumed that topt=NTs, and tup is 

greater than (M-1)Ts and less than MTs, where M, N are 
integers. To achieve the best possible transient response, for 
the 1st to (M-1)th switching cycle, the duty cycle is 100%. 
For the Mth switching cycle, the duty cycle is given by (27).  
For the (M+1)th to Nth switching cycle, the duty cycle is 
zero. 

s

sup

T
TMt

d
)1( −−

=  (27)

In the second case, topt is not an integer multiple of Ts. 
Instead, topt can be expressed as topt=NTs+tresidual, where 
tresidual<Ts  and tup is greater than (M-1)Ts and less than MTs 
as shown in Fig. 4. In this situation, the duty cycle values for 
the 1st to Nth switching cycle are the same as that when 
topt=NTs. However, for the last (N+1)th, switching cycle, an 
approximate method is used. As shown in Fig. 4, the duty 
cycle is set to dN+1 given by (28), where iLN is the inductor 
current at the end of switching cycle N. Therefore, the 
inductor current can still reach its new steady state valley 
value, iL_end, at the end of the optimized transient response 
(shown as the solid line shown in Fig. 4). The voltage error 
caused by this approximation method is very small 
compared to the output voltage drop during the load current 
step change. Therefore, its influence can be neglected. 
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Fig. 4 Optimal inductor current transient for load current positive change 
when Topt=NTs+Tresidual  

In the proposed control system implemented with a buck 
converter, a small signal PID controller is used to regulate 
the power converter during the steady state and any small 
signal transient response periods. During a large transient, 
when the large signal optimal transient response algorithm 
ends at point 5, the control algorithm is switched back to the 
PID controller. Before the control algorithm is switched 
back to the PID controller, the optimal control algorithm 
calculates the new steady state values ILnew (if current mode 
control is used) and Dnew for the PID controller, and resets 
the outputs of the PID controller to these values. 

The value of Dnew is obtained using (15). Since, in the 
steady state, the inductor current is sensed 0.3Ts before the 
switch is turned on and the slew rate during MOSFET turn-
off period is –vo’/L, the steady state reference inductor 
current value ILnew for a current mode PID controller can be 
obtained using (29). 

L
T

viI s
oendLLnew ⋅⋅+= '3.0_  

(29)

In this section, the equations of the proposed optimal 
control algorithm were derived for a positive load current 
change. In order to apply the optimal control algorithm for a 
negative load current change, or input voltage change, the 
operation principles and equations are similar to those for a 
positive load current change. 

V. EXPERIMENTAL RESULTS 
A field programmable gate array (FPGA) was used to 

implement the proposed optimal control algorithm in a 
synchronous buck converter. The parameters of the buck 
converter are listed as follows: Vin=5V, Vo=2.5V, rated load 
power=25 W, L=1µH, C=235µF, ESR=1mΩ and RL=2mΩ 
and fs=400khz. 

A comparison of experimental results for the proposed 
optimal algorithm and a current mode PID controller is 
shown in Fig. 5-Fig. 7.  The parameters of current mode PID 
controller were optimized in the frequency domain to 
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maximize the bandwidth at a phase margin of 50º.  
It is shown in Fig. 5 that using the proposed optimal 

control algorithm, the overshoot due to a positive load 
current step change is decreased by 40% compared with that 
of the current mode PID controller. The recovery time is 
significantly reduced to almost 1/10 of that of the current 
mode PID controller. 

 
(a) Current mode PID controller 

 
(b) The proposed optimal control algorithm 

Fig. 5 Experimental result of output voltage response to load current 
change from 0A to 5A (X axis: 40us/div; Y axis: 50mv/div) 

During a negative load current step change, shown in Fig. 
6, using the proposed optimal control algorithm, the 
overshoot is decreased by 55% compared with that of the 
current mode PID controller. In addition, the recovery time 
is reduced to 1/10 of that of the current mode PID controller. 

  
(a) Current mode PID controller 

 
(b) The proposed optimal control algorithm 

Fig. 6 Experimental result of output voltage response to load current 
change from 5A to 0A (X axis: 40us/div; Y axis: 50mv/div) 

Under an input voltage step change of 2.5V, shown in Fig. 
7, the overshoot of the output voltage is about 45mv with a 
recovery time of 50µs for the current mode PID controller. 
By using the optimal algorithm, the overshoot/undershoot 
during the transient is less than 10mv. 

 
(a) Current mode PID controller 

 
(b) The proposed optimal control algorithm 

Fig. 7 Experimental result of output voltage response to input voltage 
change from 5V to 7.5V (X axis: 40us/div; Y axis: 50mv/div) 

It should be noted that if the inductor and capacitor values 
are not accurate, it will influence the performance of the 
proposed optimal control algorithm.  However, fortunately 
using +/-20% tolerance for the inductor and capacitor, the 
dynamic performance of the converter is still very good. 

VI. CONCLUSIONS 
In this paper, a new optimal control algorithm to improve 

the dynamic performance of DC-to-DC converters was 
proposed. Using the principle of capacitor charge balance, 
the optimal number of switching cycles and their respective 
duty cycles are predicted in order to drive the output voltage 
back to its nominal value during the transient. Therefore, the 
best possible transient performance with minimum 
overshoot and recovery time is achieved.  

Experimental results show that the proposed optimal 
control algorithm produces much better dynamic 
performance under load current step changes and input 
voltage step changes. These results indicate that the 
proposed algorithm can be an attractive alternative to classic 
controllers in power converter applications where high 
dynamic performance is required.  Furthermore, the 
proposed algorithm can be easily applied to other topologies 
such as the boost and buck-boost converters. 
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