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Abstract— In this paper, the switching loop inductance was 
investigated on the Current Source Drivers (CSDs). The 
analytical model was developed to predict the switching losses. It 
is noted that although the CSDs can reduce the switching 
transition time and switching loss greatly, the switching loop 
inductance still has the current holding effect on the CSDs. This 
results in high turn off loss for the control MOSFET in a buck 
converter. Thus, an improved layout was proposed to achieve 
minimum switching loop inductance. The experimental results 
verified the significant switching loss reduction owing to the 
proposed layout of a buck converter with 12V input, 1.3V output 
and 1MHz. 

I. INTRODUCTION 
Voltage Regulators (VRs) with MHz switching 

frequencies can significantly reduce the size of the output 
inductances and capacitances, and improve the dynamic 
response during the transient events. However, the major 
concern of the high frequency application is excessive 
frequency-dependent losses including the switching loss, the 
gate drive loss and the body diode loss etc. 

Resonant gate driver technique was proposed to recover 
large MOSFET drive loss at high frequency (>1MHz), 
especially for synchronous rectifier (SR) [1]-[4]. Actually, in a 
buck VR, the switching losses, especially turn off losses, are 
the dominant loss among the total loss breakdown due to the 
parasitic inductances. The effect of the common source 
inductance was investigated thoroughly to predict the 
switching loss accurately [5]. In order to reduce the switching 
loss, Current Source Drivers (CSDs) were proposed in [6]-[7] 
to reduce the switching transition time and switching loss by a 
constant drive current. Hybrid gate driver scheme proposed in 
[8] uses the CSD to reduce the high turn off loss of the control 
MOSFET, while drives the SR with a conventional voltage 
driver for the purpose of simplicity. In order to achieve 
optimal design, the loss model on the CSD was proposed in 
[9] and the current diversion problem was investigated in [10]. 

However, the effect of the switching loop inductances on the 
CSD has not been investigated carefully and analytically. 

In this paper, the effect of the switching loop inductance is 
investigated on the CSDs. Through the mathematical 
modeling and simulation, it is concluded that the switching 
loop inductance still has the currents hold effect and thus, 
increases the switching loss significantly. Therefore, in order 
to improve the performance of the CSD, the switching loop 
inductance should also be minimized. Thus, an improved 
layout was proposed for the buck converter with the CSD. 

II. IMPACT OF LOOP PARASITIC INDUCTANCE ON THE 
CSDS 

In order to investigate the impact of the switching loop 
parasitics on the CSD, the basic clamp circuit as shown in Fig. 
1 is used including a MOSFET in series with a diode D1, dc 
input voltage VD and an inductive load.  
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Fig. 1 Circuit with a clamped inductive load 

The simplified equivalent circuit for the switching 
transition is shown in Fig. 2, where MOFET M1 is 
represented with a typical capacitance model, the clamped 
inductive load is replaced by a constant current source IL and 
the CSD is simplified as a current source (IG). LD is the 
switching loop inductance including the packaging 
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inductance and any unclamped portion of the load inductance. 
LS is the common source inductance. 
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Fig. 2 Equivalent circuit of MOSFET switching transition 

In order to simply the transient analysis, the following 
assumptions are made:  

(1) iD=gfs(vGS-Vth) and MOSFET is ACTIVE, provided 
vGS>Vth and vDS>iDRDS(on); 

(2) For vGS<Vth, iD=0, and MOSET is OFF; 
(3) When gfs(vGS-Vth)> vDS/RDS(on), the MOSFET is fully 

ON. 
During the switching transition period, the MOSFET 

enters its active state and the linear transfer characteristics is 
assumed as given in (1) [11], where iD(t) is the instantaneous 
switching current and vGS(t) is the instantaneous gate-to-
source voltage of the MOSFET: 

))(()( thGSfsD Vtvgti −=  (1) 

According the equivalent circuit in Fig. 2, the circuit 
equations take the form 
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From(4), dvDS/dt is solved as 
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During the switching interval, the change of the switching 
loop current iDL induces a voltage across the parasitic 
inductance. The drain-to-source voltage vDS is given as 
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Differentiating (11) yields 
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Substituting (5) into (12), (13) is derived 
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where parameters A, B and C are represented in terms of 
the device parameters (CGS, CGD, CDS, gfs and RG) and the 
equivalent circuit parameters (LD and LS) as 

))(( GSDSGDDSGDGSsD CCCCCCLLA +++= , 

GDsDfs CLLgB )( +=  and GDGS CCC += . 

For turn-on transition, the initial condition for (13) is 
vGS(0)=Vth. Then (13) solves to give either sinusoidal or 
exponential solutions, depending on the relative magnitudes 
of B2 and AC. 

When 042 <− ACB , sinusoidal solution occurs and vGS(t) 
takes the form: 
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where 
B
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When 042 >− ACB , exponential solution occurs. Then 
vGS(t) takes the form 
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Then, by substituting vGS(t) to (1) and (11), iD(t) and vDS(t) 
of the MOSFET can be calculated respectively. Therefore, 
the turn on loss is 
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The turn-off transition is similar to the turn-on transition 

except for the initial condition becomes 
fs
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The turn off loss is 
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From (16) and (17), the switching loss is  

onturnoffturnswitching PPP __ +=  (18)

Fig. 3 shows the simulated the waveforms of the turn off 
transition with different switching loop inductances. It is 
observed that the drain-to-source current iD with 4nH has a 
slower decay rate with longer turn off time as it is held by the 
loop inductances. As a result, the switching loss (turn off loss) 
is increased with higher loop inductance. The peak value of 
ploss is increased from 490W to 690W (an increase of 40%) 
with longer turn off time. 
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Fig. 3 Turn off transition comparison with LD=4nH and LD=1nH 

III. IMPROVED LAYOUT TO MINIMIZE THE PARASITIC 
EFFECTS 

From Section II, the switching loop inductances increase 
the switching transition time and hold the drain current of the 
MOSFET. This leads to higher switching loss. Particularly, 
this problem becomes more serious in a high frequency buck 
converter since the switching loss (especially turn off loss) is 
the dominant loss. 

Fig. 4 shows the synchronous buck converter with the loop 
parasitic inductance Ld1, Ls1, Ld2 and Ls2. The basic idea is to 
reduce the switching loop inductance, and thus high turn off 
losses. As shown in Fig. 5, the input decoupling capacitance 
Cin is rearranged compared to Fig. 4. In this way, the parasitic 
inductances Ld1 and LGND can be significantly reduced. Based 
on this concept, two different layouts of the buck converter 
were implemented in the experimental test. 
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Fig. 4 Buck converter with the loop parasitics 
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Fig. 5 Buck converter with rearranged input decoupling capacitance to 
reduce the loop parasitics 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 
In order to verify the efficiency improvement of the 

proposed layout arrangement, a 1MHz synchronous buck 
converter was built with the CSD as shown in Fig. 6. In order 
to reduce the dominant loss (the switching loss) in the buck 
converter in a cost-effective manner, a new hybrid gate drive 
scheme as shown in Fig. 6 is proposed for a buck converter. 
For the control MOSFET Q1, the high side CSD proposed in 
[12] is used to achieve the switching loss reduction. For the 
SR Q2, the conventional voltage source driver is used for low 
cost and simplicity, which is the bipolar totem-pole drive 
structure. PWM_SR is the signal fed into the bipolar totem-
pole pair. 

The specifications are as follows: input voltage Vin=12 V; 
output voltage Vo=1.3V; output current Io=30A; switching 
frequency fs=1 MHz; gate driver voltage Vc=5V. The PCB 
uses six-layer with 4 oz copper. The components used in the 
circuit are: Q1: Si7860DP; Q2: IRF6691; output filter 
inductance: Lf=300nH; current-source inductor: Lr=18nH 
(SMT 1812SMS-18N, Coilcraft); drive switches S1-S4: 
FDN335. 

1484

Authorized licensed use limited to: Queens University. Downloaded on March 29,2010 at 15:03:23 EDT from IEEE Xplore.  Restrictions apply. 



Photos of the prototype are illustrated in Fig. 7. The driver 
was built using discrete components and an Altera Max II 
EPM240 CPLD was used to generate the driver gate signals as 
illustrated in Fig. 7 (a). Surface mount (SMT) air core was 
used for the inductor as illustrated in Fig. 7 (b). 
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Fig. 6 Buck VR with hybrid driver scheme 
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Fig. 7 Photos of the synchronous buck prototype with the hybrid gate 
driver 

Fig. 8 shows the original power stage layout of the buck 
converter. The switching loop is highlighted in blue and the 
loop inductance is 10.5nH@1MHz measured with Agilent 
4395A Analyzer. The power stage layout was rearranged to 
have much smaller switching loop as shown in Fig. 9. The 
measured loop inductance is only 3.7nH@1MHz, a reduction 
of 65%. The major difference between layout #1 an #2 is that 
input decoupling capacitances reduce the ground trace 
inductance and provide the transient energy, therefore, the 

negative impact of the switching loop inductance is reduced 
greatly. This is very important for the CSD to reduce the high 
switching losses. 

Loop

Cin

 
Fig. 8 Buck stage: #1 

Loop

Cin

 
Fig. 9 Buck stage: #2 

Fig. 10 and Fig. 11 illustrate the drain-to-source voltages 
of the SR MOSFET for layout #1 and #2 respectively. It is 
noted that compared to the layout #1, the layout #2 with 
reduced loop inductance alleviates the oscillation of the drain-
to-source voltage greatly, which results from the parasitic 
inductance and reverse recovery of the SR body diode. 

vDS_Q2 [5V/div]

 
Fig. 10 Drain-to-source voltage at Io=30A: Buck #1 
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vDS_Q2 [5V/div]

 
Fig. 11 Drain-to-source voltage at Io=30A: Buck #2 
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Fig. 12 Efficiency comparison: top: Buck #2; mid: Buck #1; bottom: 

conventional voltage driver (Conv.) 
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Fig. 13 Efficiency with different currents and switching 

frequencies at Vo=1.3V 
Fig. 12 shows the measured efficiency comparison for two 

different layouts at 1.3V output. It is observed that at 20A, the 
efficiency is improved from 84.1% to 86.7% (an improvement 
of 2.6%) and at 30A, the efficiency is improved from 79.3% to 
83.9% (an improvement of 4.6%). Higher efficiency 
improvement is achieved when the load current increases. 
This is because the switching loop inductance has stronger 
current holding effect with the higher load current. It is also 
noted the CSD with the layout #2 achieves higher efficiency 
than the conventional voltage gate driver. In the test, the 
predictive gate drive UCC 27222 from Texas Instruments was 
used as the conventional voltage driver. 

Fig. 13 shows the measured efficiency for the CSD at 
different load currents and Vo=1.3V when the switching 
frequency changes. It is observed that at the load current of 
30A, when the switching frequency changes from 1MHz to 
500KHz, the efficiency is improved from 83.9% to 87%. 

V. CONCLUSION 
In this paper, the switching loop inductance was 

investigated on the CSDs and the analytical model was 
developed to predict the switching losses accurately. The 
CSDs can reduce the effect of the common source inductance 
to expedite the switching speed and switching loss. However, 
the switching loop inductance still has the current holding 
effect on the CSDs. This will weaken the effectiveness of the 
CSDs in the sense of the switching loss reduction. Therefore, 
the switching loop inductance should also be minimized.  

Based on this conclusion, an improved layout was 
proposed here to achieve minimum switching loop 
inductances compared to the original buck layout. The 
experimental results verified the efficiency improvement. 
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