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Abstract— Distributed air-gap inductors have the advantage of 
low fringing effect loss. However, the flux density uniformly 
distributes in the magnetic cores, which results in the magnetic 
material closer to conductor becoming saturated while the 
magnetic material far away from the conductor is still not fully 
utilized. This paper proposes a multi-permeability distributed 
air-gap inductor structure to increase inductance without the 
necessity of increasing the inductor volume. The discrete 
permeability values are investigated. Inductance variations 
versus number of permeability layers are obtained under the 
condition that the inductor thickness is constant. To evaluate 
the proposed method, a three-permeability inductor together 
with a single permeability inductor is fabricated. The 
measured results show that the three-permeability inductor 
has much higher inductance than the single-permeability 
inductor for the whole load range. Both inductors are tested in 
a 5V input, 3V output DC/DC converter to compare their 
performances. The results show the three-permeability 
inductor could further improve light load efficiency of high 
frequency DC/DC converters. 

 

I. INTRODUCTION 
The design of inductors used in high frequency DC/DC 

converters has been very popular in recent years because it 
plays an important role in increasing the power density and 
in improving the efficiency. In conventional high frequency 
DC/DC converters, the inductors are usually constructed 
with high permeability commercial magnetic cores and 
copper wires. For these inductors, air-gaps are needed to 
guarantee the magnetic cores do not become saturated at full 
load. However, the leakage flux from the air-gap also causes 
high winding loss, resulting in a reduction of the efficiency 
[1]. With the purpose of reducing winding loss caused by the 
air-gap, quasi-distributed air-gap [2-5] and distributed air-
gap [6-20] techniques have been proposed. A quasi-
distributed air-gap inductor is modified from an air-gap 
inductor by dividing a large air-gap into some small gaps so 
that the fringing effect loss could be reduced. To further 

reduce the fringing effect loss, the distributed air-gap 
inductors, which is essentially equivalent to dividing the air-
gap into finite number of small gaps, have also been 
proposed [8-25]. However, there is still a problem for 
designing such a distributed air-gap inductor since it has the 
disadvantage of nonuniform flux density distribution in the 
magnetic cores. For air-gaped inductors designed with 
commercial magnetic cores, the flux density in the core can 
be seen as uniform, but for distributed air-gap magnetic 
cores, the flux density in the magnetic cores can no longer be 
seen as uniform. It varies according to equivalent magnetic 
reluctance along the flux path. This inevitably leads to 
insufficient utilization of magnetic material. Fig. 1 roughly 
illustrates the flux density distributions in three planar 
magnetic cores with the increase of current. The first 
magnetic core is made with lower permeability magnetic 
material, and the second one is made with higher 
permeability magnetic material. The cross-sections of the 
both magnetic cores are roughly divided into three regions. 
Region I has the smallest magnetic reluctance, and Region 
III has the highest, the Region II’s magnetic reluctance is 
between them. For the first magnetic core, at full load, 
Region I has high flux density, region II has medium flux 
density, region III has low flux density. However, at light 
load, Region II and Region III have very low flux density 
which means the magnetic material is not fully utilized. For 
the second magnetic core, at light and medium load 
conditions, the flux density of Region II and Region III is 
higher than that of the first magnetic core. However, at full 
load, Region I becomes saturated. It can be seen that both the 
first magnetic core and the second magnetic core could not 
be utilized effectively, especially at light load condition.  

This paper proposes to improve the flux density 
distribution in the magnetic core by gradually increasing the 
permeability from magnetic material closer to the conductor 
to further away from the conductor (Region I to Region III as 
shown in Fig. 1). The improved flux density distribution 
shown in the third magnetic core is much more uniform.  
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  Section II of this paper describes the pr
permeability inductors. Section III analyze
the design of multi-permeability distributed 
using computer simulation. Section IV
experimental results of a three-permeability
as a single permeability inductor. Chara
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is the conclusion. 

 

II. BASIC IDEA OF MULTI-PERMEABIL
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magnetic cores are shown in Fig. 5. Based on this way, the 
magnetic material could be fully utilized and the inductance 
value could be increased compared with the single 
permeability inductors.  
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The length of magnetic path for circular cross-section 
could be expressed by its circumference (3) 

rl circularr π2_ =             (3)    

Where r is the radius of the circular magnetic path. And the 
per unit length inductance for a toroidal inductor could be 
thus expressed by (4) 
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  The length of magnetic path of the planar inductors 
could be expressed by the rectangle. Its length of the 
magnetic path could be expressed by (5) 
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  The per unit length inductance for a planar inductor 
could be expressed by (6) 
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  With such a continuously changing permeability 
distribution, the whole magnetic core could reach the peak 
flux density simultaneously, thus the magnetic core is fully 
utilized. However, it is difficult to fabricate such a 
continuously changing permeability inductor in practice. 
Instead, we could divide the region of varying permeability 
into different small regions, and each small region has a 
constant permeability. By doing this, a magnetic core whose 
permeability discretely changes could be realized. The 
inductors designed with this type of magnetic cores can be 
called multi-permeability inductors. Fig. 6 shows the 
structures of magnetic cores with n layers multi-permeability 
ferrites. Compared with single permeability structure, the 
proposed magnetic cores have discretely increasing 
permeability with the increase of radius or height. The 
permeability expression for toroidal and planar inductors are 
expressed by (7) and (8) 
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Fig. 4.  Flux density distribution in single permeability distributed 
air-gap inductors. (a) Circular. (b) Square. 
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 Fig. 5.  Continues changing permeability distribution in distributed 
air-gap inductors. (a) Circular. (b) Square. 
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And the per unit length inductance could 

(9) and (10)
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III. DESIGN OF MULTI-PERMEABILIT
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Fig. 6.  Discrete permeability distribution in 
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the continuous permeability at Point A0 which is µr(A0) or 
µs(A0). However, the magnetic material still could not be 
utilized fully if the permeability is lower than µr(A0) or 
µs(A0) as in the first case. Therefore, to increase the 
inductance as much as possible, the highest permeability for 
magnetic material between Ri-1 (ki-1) and Ri (ki) is µr(A0) 
(µs(A0)).   

B. Number of permeability layers of inductor with constant 
radius or height 
  Previous sub-section derived the optimal permeability 

value between Ri-1 and Ri, or between ki-1 and ki with the 

purpose of obtaining the highest inductance value. Another 
factor that influences the inductance value is the number of 
permeability layers in the magnetic core. Multi-permeability 
structure is essentially an intermediate state between single 
permeability structure and continuous permeability structure 
which can be seen as a multi-permeability structure with 
infinite number of permeability. To illustrate the impact of 
number of permeability layers on inductance, a calculation is 
made in this sub-section to show the inductance value versus 

number of permeability. Fig. 11 shows the discrete 
inductance values with the number of permeability layers. As 
the number of permeability layers gradually increases from 1 
to 50, the inductance for toroidal inductor increases from 
39µH to 59µH (for square cross-section, the inductance 
increases from 26µH to 70µH). And the inductances become 
closer and closer to the inductances of the inductors formed 
with continuously changing permeability magnetic cores. 
Considering the inductance value gain and complexity of the 
manufacturing process, it is suggested that 3~10 layers are 
used for general design. 

   
   (a) 

         
                                            (b) 

Fig. 11.  Inductance values versus number of permeability. (a) Circular 
(R0=1mm, Rn=5mm). (b) Square (w=3mm, h=0.1mm, k1=0.2mm, kn=5mm). 

 

IV. PROTOTYPE FABRICATION AND EXPERIMENT 
To identify inductance increasing effect of the multi-

permeability inductors, a three-permeability inductor is 
fabricated in this section. For the purpose of comparison, a 
single permeability inductor of the same volume is also 
fabricated. Their pictures are shown in Fig. 12. The cross 
section-views are shown in Fig. 13. The windings for both 
single permeability and three-permeability inductors are 
copper wires with 1mm radius. Three kinds of the ferrite 
sheets are selected to make the magnetic cores. They are 
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(b) 

Fig. 10. Per unit length inductance versus current for different 
permeability configurations. (a) Circular. (b) Square. 
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C350 from Epcos, IRJ04 and IRJ09 from T
relative permeability 9, 40 and 100, respect
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single permeability, which means the m
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converters. 

 
Fig. 12.  Pictures of the inductor prototy

 

Fig. 13.  Cross-section views of the three-permeability
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Fig. 14.  Inductance versus current. 

   
Fig. 15. Efficiency versus current. 

 

V.  CONCLU

This paper proposed mult
structure to improve noruniformly d
distributed air-gap inductors. Based 
shows that the inductance value
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