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Abstract—Interleaving frequency-controlled LLC resonant 
converters will encounter load-sharing problem due to the 
tolerance of the resonant components. In this paper, full-wave 
and half-wave switch-controlled capacitors (SCCs) are used in 
LLC stages to solve this problem. By using resonant capacitance 
as a control variable, the output current can be modulated even 
when all the LLC stages are synchronized at the same switching 
frequency. A design procedure is developed. A 600W prototype is 
built to verify the feasibility. 

I. INTRODUCTION 
Today’s power converters are required to deliver more 

power and achieve high efficiency in a wide load range. These 
requirements are sometimes contradictive, because when a 
power supply is designed for a higher capacity, the light-load 
efficiency is likely to suffer. To solve this problem, 
interleaving and phase-shedding techniques can be employed, 
and they have the following advantages: (a) using the 
interleaving technique, the load capacity of a power supply can 
be expanded by adding parallel phases while the design of each 
phase can be optimized for a lower power level; (b) using the 
phase-shedding technique, at light load, unneeded phases can 
be shut down, thus the light-load efficiency can be improved; 
(c) in the heavy load condition, the multiple phases can split 
the total current, thus mitigate the I2R loss; (d) the interleaving 
technique can reduce the ripple current in the output capacitor, 
thus reduce the required capacitor size. 

The above discussed techniques and the benefits are 
promising to the popular LLC resonant topology [1-4], which 
has been widely adopted in flat-panel TVs, laptop adapters, 
server computers, and so on. However the key problem is the 
load sharing: when interleaved, all the LLC stages must 
operate at the same switching frequency for current ripple 
cancellation; whereas due to the components’ tolerances, 
individual LLC stages may have different resonant frequencies, 
thus the output currents will be different. Simulation results in 
Section IV will show that the commonly seen component 
tolerances can cause drastic current imbalance. 

Previous studies on multiphase LLCs all had limitations. 
The topologies in [5, 6] are multiphase LLCs but not 
interleaved. The studies in [7-10] did not consider the load 
sharing problem caused by to the component tolerances. The 
load sharing method in [11] needs an additional power stage to 
regulate the output voltage and does not work for more than 
two phases interleaved. The structure in [12] divides down the 
input voltage by the number of phases, therefore cannot expand 
the load capacity; and it also has difficulties with phase 

shedding. Similarly, the topology in [13] also has difficulties to 
realize phase shedding.  

In this paper, a switch-controlled capacitor (SCC) [14] is 
used in each LLC stage (SCC-LLC) to modulate the resonant 
capacitance, thus the resonant frequency becomes a control 
variable. As a result, when all the phases are operating at the 
same switching frequency, individual phases will still have 
independent regulation. This advantage enables a simple 
structure for interleaving compared to those in [12, 13], thus 
load sharing and phase shedding are easy to implement. Also, 
the system’s load capacity can be expanded by paralleling an 
arbitrary number of phases. In the following sections, Section 
II describes the improved driving schemes of SCC; Section III 
compares two candidate operation schemes of SCC-LLC; 
Section IV provides analysis and the design method of the 
preferred operation scheme; and Section V shows the 
experimental results. 

II. THE IMPROVED DRIVING SCHEMES FOR FULL-WAVE 
AND HALF-WAVE SCCS 

The concept of switch-controlled capacitor (SCC) was 
introduced in [14], in which the body diodes of the MOSFETs 
carry current for half of the switching period in the worst case.  
An improved driving scheme is proposed in this paper to 
prevent the MOSFET body diodes from carrying current, 
shown in Fig. 1 and Fig.2.  

Fig. 1 shows the structure and waveforms of a full-wave 
SCC. The operation is described as follows: When a sinusoidal 
current, IAB, is applied to a SCC, the current zero-crossing 
points are at angles 0, π, 2π … by definition. For a positive 
half-cycle where the current flows from A to B, S2 is turned on 
to prevent body diode from carrying current; the gating signal 
of S1 is synchronized at 2nπ (n∈N), and it turns off S1 at angle 
2nπ+α, where π/2<α<π. The current then flows from A to B 
via Ca and charges Ca until the angle (2n+1) π. At the angle 
(2n+1) π, the current reverses the direction, and begins to 
discharge Ca. After Ca is fully discharged, and the negative 
current is about to flow from B to A via S1’s body diode, S1 is 
turned on again to prevent the body diode from carrying 
current. Then S1 remains on until angle (2n+2) π + α, which is 
α angle past the next sync point (2n+2) π. S2 controls the 
negative half-cycle and has a symmetrical operation, except the 
sync points are at (2n+1) π. The equivalent capacitance of the 
full-wave SCC, CSC_FW, is modulated by the angle α, given in 
(1) [14].  

Fig. 2 shows the structure and waveforms of a half-wave 
SCC. The control scheme is similar to that of the full-wave 
SCC, except only a half wave can be modulated. The control 
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(a) Structure of full-wave SCC. 

(b) Waveforms of full-wave SCC. 
Figure 1 Structure and waveforms of full-wave 

 

 
(a) Structure of half-wave SCC. 

(b) Waveforms of half-wave SCC. 
Figure 2 Structure and waveforms of half-wave 
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For a given set of values of Lp, K, RL and N, gain curves 
resulted from FrM and FsM are plotted using (4), respectively, 
shown in Fig. 4. In the plots, the variable resonant frequency is 
normalized at the switching frequency, and the variable 
switching frequency is normalized at the resonant frequency. It 
is illustrated that the FsM is able to achieve a higher peak gain 
within a narrower frequency variation range than FrM. The 
narrow frequency variation range of FsM indicates lower RMS 
current and thus higher efficiency. This phenomenon can be 
understood from the impedance point of view: the FsM 
modulates the impedance of all the resonant components; 
whereas the FrM only modulates the impedance of the resonant 
capacitance, thus is less effective.  

Taking into consideration that the half-wave SCC also has 
lower cost and less conduction loss in the SCC MOSFET, it is 
apparent that FsM is the preferred control method when 
possible. Therefore, the half-wave SCC controlled LLC with 
variable switching frequency operation (hSCC-LLC) is a more 
advantageous solution than the full-wave SCC controlled LLC 
with constant switching frequency operation (fSCC-LLC), 
except when the constant switching frequency is a desired 
feature. 

IV. ANALYSIS AND DESIGN METHOD OF hSCC-LLC 
 The hSCC-LLC uses the switching frequency to regulate 

the output voltage, therefore the design procedure is the same 
as in conventional LLCs, which is available in many literatures 
[4, 21-23]. The extra work is to determine the SCC capacitor 
value Ca. This section studies the load sharing characteristics 
of hSCC-LLC, and then provides a design method of the half-
wave SCC. 

A. Load Sharing Characteristics of hSCC-LLC 
 Owing to the components’ tolerances, the resonant tanks 

of the interleaved phases will slightly vary one from another, 
resulting in different output-current-versus-switching-
frequency curves. A set of such curves are obtained from 
simulation and plotted in Fig. 5. In the simulation, ±7% 
tolerances are assumed for inductors, and ±5% tolerances are 
assumed for capacitors. The simulated LLC converter has 
300V-400V input and 12V output with a transformer turns 
ratio of 20:1. Cs is 40nF, Lr is 12µH, and Lp is 86µH. From the 
simulation results, the following properties are observed: 

1. The output currents vary drastically when different 
tolerance values are applied. For example, at 160 kHz 
switching frequency, the output current can range from 200A to 
0A. 
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Figure 5 Output current VS. Switching frequency curves at different tolerances. 
Input voltage is 400V. Output voltage is 12V. Transformer turns ratio is 20:1. 

 
Figure 4 Comparison of switching frequency modulation and resonant 
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Figure 3 Topology of the proposed SCC-LLC. 
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2. Reduced resonant tank values cause higher resonant 
frequency, thus the output-current-versus-switching-frequency 
curve is shifted towards higher frequency. Therefore in an 
interleaved LLC converter, such a phase is a stronger phase, 
which provides more output current than designed. The worst-
case condition is that all of Lp, Lr, and Cs are at their minimum 
values (Cs-5%, Lr-7%, Lp-7% in this example). Because SCC 
can only reduce the resonant capacitance value, it cannot 
reduce the output current of a stronger phase. Therefore, the 
strongest phase becomes the reference phase, and all other 
phases should increase their output currents to match it. 

3. Increased resonant tank values cause lower resonant 
frequency, thus the output-current-versus-switching-frequency 
curve is shifted towards lower frequency. Such a LLC stage is 
a weaker phase in an interleaved LLC converter, which outputs 
less current than designed. SCC should be used in such phases 
to increase the output current and match the reference phase. 
The worst-case condition is that all of Lp, Lr, and Cs are at their 
maximum values (Cs+5%, Lr+7%, Lp+7% in this example). 

4. The peak output current may be also changed by the 
component tolerances. The worst case happens when Cs is at 
the minimum value and Lp is at the maximum value (Cs-5%, 
Lr-7%, Lp+7% and Cs-5%, Lr+7%, Lp+7% in this example), 
where the peak output current is about 5% below the no 
tolerance condition. 

Simulations are also carried out for 300V input condition 
and 18:1 turns ratio, respectively. Despite different frequency 
ranges and peak output currents, the above observed properties 
are the same. 

 Therefore, still referring to Fig. 5, the worst-case 
requirement for the SCC is to reduce the equivalent resonant 
capacitance of the weakest phase (the leftmost curve) so as to 
shift it to a higher frequency and match the strongest phase (the 
rightmost curve). The result is that both LLC phases have the 
same output current and operate at the same switching 
frequency range as the strongest phase. 

Simulations are performed to find the required Cr that can 
compensate the worst-case tolerances and achieve load 
balance. Cr is expressed as a reduction from Cs. The result is 
shown in Fig. 6. The following characteristics are observed: 

1. A narrow reduction range of 17% to 19% from Cs is 
sufficient to achieve load balance. At light-medium load, a 
reduction between 17% and 18% is selected. At heavy load, a 
reduction between 18% and 19% is selected. 

2. The peak output currents resulted from SCC 
compensation are about 14% lower than the reference phase. 
This effect must be taken into consideration when design an 
interleaved LLC converter. Sufficient margin is needed in case 
of the worst-case tolerance. 

The simulation is repeated for 300V input condition and 
18:1 turns ratio, respectively. The resulted Cr and the reduction 
percentage of peak output current are almost the same as 400V, 
20:1 turns ratio condition. Therefore, the worst-case for SCC 
modulation is independent from input condition and turns ratio. 

The above studies identified the worst-case Cr to achieve 
load balance, and revealed that the peak output current will 
reduce as a result of SCC modulation. Mathematical methods 
are needed to assist the SCC design. 

B. Derivation of Worst-case Resonant Capacitance 
The output current can be expressed by the load resistance 

RL, derived from (4), in (5). 
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Using a, b, and c to stand for the ratios of the actual 
component values and the ideal values of Lp, Lr, and Cs, 
respectively, then the inductance ratio becomes: 

0
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p p
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where subscript 0 stands for ideal values without tolerances. 

And the resonant frequency becomes: 
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Substitute (6), (7), and ωs=ωn·ωr0 into (5), then RL can be 
expressed as a function of a, b, and c: 
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where ωn is the switching frequency normalized at resonant 
frequency ωr0.  

When properly compensated, the load resistance of the 
strongest phase and the weakest phase are equal, meaning that 
the output currents are equal. The equation is written in (9), 
where q is the ratio of the required Cr and Cs0 of the weakest 
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Figure 6 Output current VS. Switching frequency curves after compensation. 
Input voltage is 400V. Output voltage is 12V. Transformer turns ratio is 20:1. 
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phase in order to match the load current of the strongest phase. 
As shown in Fig. 6, the required q value slightly varies in 
different load conditions; the minimum value of q, qmin, is the 
worst case for the SCC modulation. 

min min min max max( , , ) ( , , )L LR a b c R a b q=  (9) 

The expression of q is rather long and is inaccurate when 
predicting the minimum value, due to the inherent inaccuracy 
of the FHA. Instead, a visual assisted method is proposed to 
find an accurate estimation of qmin. It is described as follows: 

Use (8) to plot curves of load resistances as a function of 
normalized switching frequency, shown in Fig. 7. The valley 
point of each curve is the minimum load resistance of the 
phase. The lower the minimum load resistance, the higher the 
peak output current. On the left-side of the valley point is the 
ZCS region which should be avoided. On the right-side of the 
valley point is the ZVS operation region, where all the 
interleaved LLC phases should match to the strongest phase. 

Four curves are drawn in Fig. 7: the solid line is from the 
strongest phase (reference), RL(amin,bmin,cmin); the dash line is 
from the weakest phase, RL(amax,bmax,cmax); the dash-dot line is 
from the weakest phase after compensation, RL(amax,bmax,q). By 
varying q, 0.81is found to be the best match of the right-side 
curves, which equals to a -19% reduction from Cs0, in 
accordance with that suggested by Fig. 6. Because the variation 
range of q is only a few percent as is shown in Fig. 6, the best 
match is also a good estimation of the qmin. The dot line is 
resulted from q=0.67, which is a mathematically valid solution 
from (9); however the resulted curve largely deviates from the 
reference curve; therefore it is invalid in practice. The visual 
assisted method can exclude these otherwise mathematically 
correct solutions and prevents qmin from being unnecessarily 
small, and thus can achieve an optimal design. 

The peak output current reduction in percentage suggested 
by Fig. 7 are also in good accordance with simulation, though 
the absolute values are not accurate. The best match curve’s 
peak output current is 14% less than that of the reference 

curve, which is the exact percentage suggested by Fig. 6. 
Repeating the calculation at 300V input condition yields the 
same conclusion.  

Therefore, the visual assisted method can accurately predict 
the value of qmin and the percentage of peak output current 
reduction. The peak current reduction should be considered 
when designing the LLC resonant tank, and the qmin is used to 
determine the SCC capacitor value, Ca, as discussed below. 

C. Design of half-wave SCC Capacitor 
The SCC is in series with Cs, therefore the equivalent 

resonant capacitance is derived by substituting (2) into (3): 

( )
2

2 2 2 sin 2
a s

r

a s s s

C C
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C C C C

π
π π α α

=
+ − +

 (10) 

The control angle α is from 0 to π, which regulates the 
resonant capacitance from Cr,min to Cr,max. Cr,max occurs at α=π 
and Cs=Cs0·cmax, where the SCC MOSFET is always turned on, 
thus Cr,max=Cs0·cmax. Cr,min occurs at α=0. It must not be larger 
than qminCs0 so that it has sufficient capacity to balance load 
current in the worst case. Setting Cr,min smaller than qminCs0 is 
acceptable, but the peak voltage of Ca will be higher, and thus 
a higher voltage rating and Rds(on) of the SCC MOSFET. 
Therefore, the optimal design is to achieve Cr,min= qminCs0 when 
α=0 and Cs=Cs0·cmax.  

Substituting Cr=qminCs0, α=0, and Cs= Cs0·cmax into (10) 
gives (11): 

max
min 0

m
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a0 x

a s

a s
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cC C

C
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C
C
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Then solving (11) gives the expression of Ca: 

mmax in

min

0 0
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a s

c q
C C

qc
=

−
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where Ca0 stands for the ideal value of Ca. Considering Ca also 
has tolerance, the implemented Ca value should be: 

0

max

a
a

C
C

e
≤  (13) 

where emax is the maximum ratio of actual and ideal Ca due to 
the tolerance. 

D.  Design Procedure of hSCC-LLC 
The design method discussed in this section is summarized 

as follows. 

1. Design LLC stages using conventional methods. The 
design should leave sufficient margin considering that the SCC 
modulation will reduce the peak output current. Then identify 
the tolerances of the resonant components. 

2. Use (8) to plot load resistance curves of the strongest 
phase and the weakest phase, and tune q of the weakest phase 
to match the strongest phase in the ZVS region. The resultant q 
is considered to be qmin. The percentage of peak output current 
reduction can be also measured from the plots.  

3. Use (12) and (13) to determine the Ca value. 

 

Figure 7 Load resistance VS. Normalized switching frequency. Plotted using 
(8). Input voltage is 400V. Output voltage is 12V. Turns ratio is 20:1. 
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V. EXPERIMENTAL RESULTS 
A 600W two-phase interleaved hSCC-LLC i

to verify the feasibility and the advantages of
method. The system block diagram is shown 
parameters are in Table 1. 
Table 1 Prototype parameters 

Switching frequency 200kHz 
Input Voltage 400V nominal/300V m
Output Voltage 12V 
Output Power 300W × 2 
Transformer Turns Ratio 20:1, Center tapped 
Magnetizing Inductance 87μH(Phase1)   85μH(
Resonant Inductance 12μH(Phase1)   14μH(
Series Capacitors 36nF±5% 
SCC Capacitors 30nF±3% or 155nF±5
Output Capacitance 1790μF (100μF× 8, 33
Half-bridge MOSFET IPB60R190C6 
SCC MOSFET BSC060N10NS3G(10
SR MOSFET BSC011N03LS 
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phase LLC converter at 50A 
capacitance that is used in the 
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Figure 10 Output voltage ripple of single phase LLC. Io=50

Figure 11 Output voltage ripple of two-phase interleaved
Io=50A, Co=1790µF, Ca=30nF. 

Figure 12 Output voltage ripple of two-phase interleaved
Io=50A, Co=1790µF, Ca=155nF.  

Figure 13 Efficiency comparison, with and without pha
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ase shedding. 

Fig. 13 shows the efficiency i
shedding technique in the propo
load efficiency is above 95.5%
efficiency is improved from 81% 

 

VI. CONC

A switch-controlled capacitor 
LLC converter (SCC-LLC) is pro
interleaving, load sharing and p
include expandable load capac
ripple, and higher light-load effi
the half-wave SCC-LLC with v
(hSCC-LLC) is more advantageo
LLC with constant switching freq
sharing characteristic of hSCC-L
visual assisted method is propos
SCC capacitance value. A two-p
prototype is built and shows 
sharing, current ripple cancellati
efficiency. 
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