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Abstract— A novel Lithium Ion (Li-Ion) battery model 
parameter identification technique based on a simple on-line 
adaptive approach is presented in this paper. The proposed 
technique is able to accurately estimate the State of Charge 
(SOC) in Li-Ion batteries by a very simple manner. A previously 
proposed Li-Ion battery model and its dynamical equations 
have been used to develop the proposed parameter estimation 
algorithm. Estimated model parameters are used to calculate 
the Open-Circuit Voltage (OCV) that is employed to determine 
the SOC with no advanced knowledge of the battery 
parameters. Furthermore, the paper introduces a moving 
window least mean square approach that adaptively updates 
estimated battery in a very fast manner. The SOC is 
recalculated at the end of each window cycle based on the newly 
estimated parameters. The proposed SOC estimation approach 
continuously tracks any changes in the battery/model 
parameters and is fast, accurate, and simple. 

Keywords— State of Charge (SOC), Li-Ion battery, 
Estimation, Least Mean Square. 

I. INTRODUCTION 

Li-Ion battery is used in almost all-electric vehicle, most 
of today’s plug-in hybrid electric vehicles and also most 
portable consumer electronics such as laptops and cell phones 
due to its beneficial characteristics. A previous knowledge of 
the State of Charge (SOC) of the battery is unquestionably 
useful to improve battery’s performance, safety, efficiency, 
life time, and reliability [1-6]. Therefore, precise SOC 
estimation is an important task in all applications that a Li-Ion 
battery is in service. The techniques developed and presented 
so far for SOC are categorized as: open circuit voltage method, 
coulomb counting method, intelligent method, and filter/ 
observer based method [7-12]. 

The open-circuit voltage (OCV) of the battery, if known, 
can directly be used to determine the SOC, and it is the 
simplest way to do so. However, when the battery is in service, 
the open circuit voltage cannot be measured. In fact the battery 
should be open circuited for at least two hours, open circuit 
voltage is measured, and SOC is calculated. This is not 
practical in most applications. Only for those applications in 
which the battery can rest for long time periods, direct 
measuring of OCV is functional. In all other applications, 
calculating of SOC based on the OCV is possible, if OCV can 
be estimated accurately by an appropriate modeling of the 
battery and by implementing an appropriate estimation 
scheme [13]. 

The dynamic equations of a Li-Ion battery are nonlinear 
and somehow complex. Battery parameters change with time, 
with the operating point conditions such as temperature, etc. 

This complexity and nonlinearity make battery modeling and 
the SOC estimation quite challenging. Variety advanced and 
intelligent methods including fuzzy logic, Artificial Neural 
Network (ANN), Radial Basis Function (RBF) network, 
Fuzzy Neural Networks (FNN) have been proposed to 
effectively handle such dynamic complexity. The mail issue 
with all these techniques is the need for a large amount of data 
to train the network, and update this training time to time. The 
advantages and disadvantages of each method have been 
summarized in the Table I. 

TABLE I.  PROS AND CONS OF SOC ESTIMATION METHODS 

method pros cons 

open circuit voltage no need an 
algorithm  to 
implement 

battery needed to be in resting 
mode for long time 

coulomb counting easy to 
implement 

dependent on the initial SOC, 
not suitable for PEV's with 

frequent charge or discharge 
profiles due to the need of 
accurate initial conditions 

Intelligent 
algorithms 

powerful 
ability to 

approximate 
nonlinear 
functions 

need for a large amount of 
data to train the algorithm 
applicable for all operating 

conditions 

Extended Kalman 
Filter 

acceptable 
accuracy, 

dealing with 
white noise 

need for an accurate enough 
battery model, large 

computational time and 
memory, complicated 

algorithm to implement 

Observer-based 
)Luenberger( 

acceptable 
accuracy 

difficult for online application 
due to the complicated 

computational algorithm 

Observer-based 

 )Sliding mode( 

acceptable 
accuracy ,

robust against 
modeling 

uncertainties 

complicated algorithm to 
implement, chattering problem 

 

Kalman and advanced Kalman Filtering (KF) have 
alternatively used to estimate the SOC. Although applying KF 
for SOC estimation brings acceptable accuracy and deals with 
system noise, it suffers from a complicated algorithm, large 
computational memory, large computational time, and 
difficult calculation of feedback gain of Kalman filter [14,15]. 

A popular SOC estimation technique that has been 
addressed in many review articles is Filter/Observer-based 
method. This method applies the measured input and the 
present/past state signals to the battery model to calculate the 
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model output, then the error signal which is the difference 
between the calculated and measured output is feedback to 
update the model states estimation [16-20]. 

Luenberger observer, Sliding mode observer, Proportional 
- Integral observer (PI) are some examples of the Feedback / 
Observer-based method and hold some advantages and 
disadvantages summarized in the Table I. 

Conclusively, it appears that the methods for SOC 
estimation applied so far neither accurate nor simple enough 
and the necessity of a method with the characteristics of 
simplicity, being easy to implement, and accuracy; together is 
noticeable. 

II. DISCRET TIME MODEL FOR BATTERY 

Based on our proposed discrete linear four parameters 
model in Fig. 1, Voc is estimated. Since there is a relationship 
between SOC and Voc defined by a Voc-SOC curve, SOC can 
be calculated from the estimated Voc. 

+
_
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I

+
_

+

Vt

-
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C1

C ,
I Voc=f(SOC)Qc

 
Fig. 1. .Li-Ion battery model  

During battery charging/discharging for the model we have 
Eqs. (1) and (2) as: 

1 0( ) ( ) ( ) ( )t OC CV t V t V t R I t= − −          (1) 

1 1

1 1 1

( )( )C CdV V tI t

dt C C R
= −           (2) 

Where ( )tV t  and ( )I t represent the charging/discharging 

terminal voltage and current of the battery, respectively. 
Considering (ݐ)ܫ within in a small time interval, ∆t , if we 
discretize Eq. (2) we will have 

1 1

1

1 1 1

( ) ( ) 1 1
( ) ( )C C

C

V t t V t
I t V t

t C C R

+ Δ −
= −

Δ
       (3) 

During ∆ݐ  due to the large ratio between the battery’s 
capacitor, C , and the transient capacitor,	Cଵ, we have  

( ) ( ) 0OC OCV t t V t+ Δ − →          (4) 

And we can have: 

1 0 0
1 1 1

( ) ( ) ( ) ( ) ( )C

t t
e t I t V t R I t t R I t

C C R

Δ Δ= − + − + Δ +  (5) 

Where ݁(ݐ) is defined as 

1

( ) ( ) ( )

    ;       2,...,
t t

k k

e t V t t V t

t t t k n−

= + Δ −
= + Δ =

        (6) 

By replacing ܸభ , we have Eq. (7) as 

0 0 0
1 1 1

1 1 1 1

( ) ( ) ( )

          ( ) ( )t OC

t t
e t R I t t I t R R

C C R

t t
V t V t

C R C R

 Δ Δ= + Δ + + − + 
 

Δ Δ−
       (7) 

We can have Eq. (8) as 

1 2 3 4( ) ( ) ( ) ( )te t I t t I t V tα α α α= + Δ + + +        (8) 

Where the parameters are defined as 

4

3
OCV

α
α

= −                 (9) 

0 1R α=          (10) 

2 3 1 1
1

3

R
α α α α

α
− +=         (11) 

1
2 3 1 1

t
C

α α α α
Δ=

− +
        (12) 

III. PROPOSED ALGORITHEM FOF PARAMETERS 

ESTIMATION 

By rewriting Eq. (8) in a discrete form, we have: 

E Aα=            (13) 

In which each of the matrix ܣ, ,ߙ  are defined as Eq. (9) ܧ
and n is the nth discrete-time data sample with a time interval ∆ݐ: 
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 And lets supposed we have N+1 data samples in one-time 
interval, ∆ݐ. Now we should find the best fit for elements of 
vector ߙ to have a minimum Euclidean norm, also called norm 

2th of the error vector or min of the 2|| ||E Aα− which the 

solution is [22]: 

1( )T TA A A Eα −=         (17) 
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Now our goal is to estimate ܸ  with no knowledge of 
parameters and just by means of current and terminal voltage 
and we propose our method as following. It is supposed that ܸ  is constant during all N samples. The number of samples 
is a trade-off between the accuracy of the estimation scheme, 
the validity of assuming a constant ܸ , and the computation 
efforts. 

In the proposed algorithm, an array of N+2 elements of the 
battery’s terminal voltage and current is formed. It is assumed 
that ܸ  is constant during ∆ݐ ൈ (ܰ  2), which as mentioned 
before, is a valid argument. 

The algorithm can be explained as following. 

1. At the first step, N+2 samples of terminal voltage and 
current are obtained and fill in the array. 

2. The algorithm runs and reports the estimated values. 

3. The N+2 moves one step ahead that means the first 
sampled data is thrown away, and a new voltage and 
current sample is added to the array. In other words, 
the window moves one step ahead, such that it does 
not include the oldest data sample, but includes the 
newest one. The step 2 repeats as shown in Fig. 2. 

4. The algorithm runs till an accurate parameters set is 
achieved. 

The proposed algorithm always applies the last N+2 data 
samples of terminal voltage and current of the battery to run 
the estimation process. 

Data sample 
n

Data sample 
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n+N
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.
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.
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.

.

.
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Estimation 
algorithm 
runs and 

estimated 
values are 
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.   .   .
.   .   .   
.   .   .
.   .   .
.   .   .
.   .   .
.   .   .
.   .   .
.   .   .
.   .   .

The next single data is sampled. The oldest data is thrown 
away and the array is filled in with old data and also new 
single data as the last element of array and the algorithm 

repeats

 
Fig. 2. Schematic diagram of proposed algorithm. 

IV. SIMULATION AND EXPERIMENTAL RESULTS 

In order to prove the validity of the proposed algorithm in 
estimating the model parameters and, its competitive features, 
and its performance behavior, comprehensive computer 
simulations have been carried out. The simulation results 
show that our proposed algorithm can converge to real values. 
Even by sudden, big, and fast changes in the parameters. For 
this simulation, battery’s terminal voltage and current are 
sampled with a sampling frequency of 500Hz for period of 2 
seconds to have N+2 data samples for the first step of the 
proposed algorithm. Sample simulation results are shown in 
Fig. 3, 4, 5, 6, 7, 8 and show the algorithm’s power to follow 

the changes and update the model parameters and converges 
very quickly. 

 
Fig. 3. Terminal voltage vs. number of algorithm runs for C and R1 

changes. 

 
Fig. 4. ܸ vs. number of algorithm runs for C and R1 changes. 

  
Fig. 5. Terminal voltage vs. number of algorithm runs for C and R0 

changes. 

 
Fig. 6. ܸ vs. number of algorithm runs for C and R0 changes. 
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Fig. 7. Terminal voltage vs. number of algorithm runs for C1 and R0 
changes. 

 
Fig. 8. ܸ vs. number of algorithm runs for C1 and R0 changes. 

Fig. 9 and Fig. 10 show the experimental setup and the 
PCB of the experimental setup which have been used to test 
and verify the proposed algorithm for SOC estimation in the 
Li-Ion cell battery. In the hardware implementation, there are 
two capabilities. The setup is able to act autonomously and file 
the terminal voltage and current of the battery. We can apply 
arbitrary current profile to test the battery cell. These result in 
evaluating the algorithm in presence of sudden changes 
applied to the battery and showing the power of proposed 
algorithm to follow the changes and still adaptively working. 

 

 
Fig. 9. Picture of the experimental setup. 

 
Fig. 10. PCB of the experimental setup. 

A Li-Ion battery cell (CGR18650CG) with characteristics 
of 2200mAh nominal capacity, 4.2V maximum voltage is 
used for the experimental results. We use some resistances 
connected in parallel and series, hardware switches controlled 
by a National Instruments USB-6001 data acquisition(DAQ) 
device (NI USB-6001), two analog inputs with the resolution 
of 14-bit applied for terminal voltage and current acquisition. 
The data sampled from terminal voltage and current by NI 
USB-6001 are saved and applied for SOC estimation as shown 
in Fig. 9. The experimental setup configuration is shown in 
Fig. 11. 

 
 

Fig. 11. Experimental setup configuration. 

By means of the proposed algorithm and the SOC-VOC 
curve we gained in [21], the experimental result is shown in 
Fig. 12. 

   
Fig. 12. Experimental results for estimated and real SOC vs. time. 
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V. CONCLUSION 

A simple, accurate, fast, easy to implement, and almost 
ideal SOC estimation is presented has been presented in this 
paper. The proposed online adaptive estimation algorithm 
based on an extended moving window least mean square 
preserves all the simplicity, quickness, and accuracy factors 
together and needs just the battery terminal voltage and 
current. The proposed powerful method can follow all 
changes in the battery parameters due to various factors. All 
other SOC estimation schemes proposed to far, sacrifice either 
the simplicity or the accuracy for the sake of other factors. 
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